建筑垃圾破碎机机械结构设计规范最新版是哪一版版本-建筑垃圾破碎站平面图

开办一个的建筑垃圾处理厂手续,首先如果采用固定式生产线设备,则需要移动面积的土地和厂房,而且要有稳定的建筑垃圾来源,附近的交通要便利(方便建筑垃圾运输)。

通常由ZSW振动给料机、PJ建筑垃圾专用破碎机、YK圆振动筛、除铁器、轻物质分离器、皮带机、建筑垃圾制砖机(这个客户可以根据自己的需求灵活配置)等设备组成。移动式的则无需修建厂房,轮胎可自行移动。

建垃圾综合处理厂当地政府支持:

1、建设部规定垃圾处理项目可以有25—30年的特许经营权,企业可垄断经营25—30年;2、政府以划拨方式提供项目用地,若企业自行购买项目用地,可享受公益事业优惠用地政策;

3、当地政府每吨给予55元—140元的垃圾处理费用补偿;

4、利用垃圾中可再生资源生产的产品,如有机肥料、塑料等产品的销售减免税收;

5、水、电消耗按成本价计算;

6、在建设期政府提供国债资金支持和环保专项资金支持;

7、鼓励银行资金支持和参与;

8、投产后,可申请科技创新资金和环保项目以奖代补资金。

扩展资料:

打造出的移动式、固定式建筑垃圾处理设备,根据用户需求实现量身定制。不仅能够有效的改善城市建筑垃圾围城现象,经回收再利用后的砂石骨料还可弥补我国建筑用砂供不应求的局面,一举多得。此举顺应了我国建设绿色、可持续发展的方针政策。

因此,对于开厂优惠政策方面,我国大部分城市政府、相关部门都会给予政策、资金方面的双项支持。因此,发展前景十分好。其次,关于垃圾处理厂手续方面,需要根绝每个地区的差异而决定。一个地区一个方法。

百度百科-“十二五”全国城镇生活垃圾无害化处理设施建设规划

建筑垃圾制砂机前景怎么样?如果现在投资有哪些优劣势

2016年以来,政府层面已经充分认识到建筑垃圾处理的重要性。建筑垃圾的资源化利用开始进入大众视野,被各地政府提上日程。建筑垃圾处理的必要性此地不在做过多的阐述。2019年建筑垃圾资源化利用被各地政府提上了日程,各地城投、环投、环保再生企业纷纷入场布局,拉开了中国建筑垃圾资源化利用的大幕。

正常的建筑垃圾处理需要一个完整的工艺处理流程。从建筑垃圾的收集运输开始,到建筑垃圾的消纳、资源化处理以及到最终再生品的再加工和推广是一个完整的产业链,每个环节都相当的重要。现在从整个行业来看,建筑垃圾资源化利用的水平还有待提高,建筑垃圾再生骨料的品质也有待提高。再生骨料的再加工分选可以有效的提高建筑垃圾再生品的产品附加值,很好了缓解了建筑原材料的供应问题,形成了一定意义上的闭环。

1、建筑垃圾处理整体工艺

一般可采用自动螺旋破袋机,可以实现建筑垃圾袋机械化自动化破袋和收集,减小工人劳动强度,改善工作条件。采用先进软/硬质骨料分选设备和轻物质浮选设备,提升再生骨料的品质和价值。采用产尘产噪的设备区间封闭,并进行负压除尘和隔离降噪;喷雾除尘;建筑垃圾在库房内存放,运输和装卸封闭化管理等多方面技术和设备,将粉尘进行收集利用,并把粉尘和噪声对环境的影响控制好,确保达到或超过环评标准。

建筑垃圾

建筑垃圾处理工艺流程图

2.建筑垃圾收集与运输管理

建筑垃圾的收集与运输管理

建筑垃圾的收集与运输

3.建筑垃圾资源化处理

建筑垃圾的处理过程主要分为人工初步分拣→除铁→筛出粉料→多重破碎→轻物质分选系统→再生骨料→再生骨料复选再加工→相关生态链的配套加工(再生砖制砖线、再生混凝土)。目前业内破碎、初步筛分工艺已经相当成熟,基本沿用之前矿山设备的一整套应用体系。从行业现状来看整个生产工艺最核心的环节在于建筑垃圾的智能分选系统和后期建筑再生骨料的分选再加工。分选系统越完善,分选的越精细相应得到的再生品的价值就会越高。欣畅源科技近年来一直致力于建筑垃圾的资源化利用,在分选处理工艺居于全国领先地位。其轻物质浮选系统、砖砼分选系统得到北京建工、北京天源建工、南通天楹、各地城投、环投等一致好评。

欣畅源科技建筑垃圾处理工艺流程图

欣畅源科技建筑垃圾处理工艺

具体处理步骤:

步骤一、将原料中的大件柔性薄膜材料和大件木料物质以及特殊垃圾进行清理后分类堆放。

步骤二、由装载机将建筑垃圾倒入缓存斗,缓存斗下部为振动给料机,通过振动给料机将物料均匀的送入破袋机中。同时配喷雾除尘器进行抑尘处理。

步骤三、由于大量建筑垃圾为方便运输会进行装袋处理,所以破袋机自动将装有建筑垃圾的尼龙袋割破使得建筑垃圾外露,破袋处理的建筑垃圾通过输送带送入棒条筛,输送带配有称重传感器,可以在物料输送过程中对物料连续称重。

步骤四、筛分机将物料分为5mm以下物料和5mm以上物料,5mm以上物料通过输送带送入振动给料机,分拣台设置于颚式破碎机入料皮带上,同时设置自动除铁皮带机和负压比重式轻物质风选机,将大块轻质物和长条金属分拣分类,

步骤五、通过步骤四处理后的物料进入鄂式破碎机,破碎后的物料通过输送带送入一次圆振筛中。鄂式破碎机配置布袋除尘系统进行抑尘处理。

步骤六、一次圆振筛将步骤五输送来的物料进行筛分处理,将5mm以下粉料(细集料)与原料分离,5mm以下粉料(细集料)通过输送带送入粉料存储仓。5mm以上物料通过输送带送入浮选系统。

步骤七、浮选系统主要是将风选不宜去除的轻质物进行二次去除,保证骨料中轻质物含量不大于1%,浮选机处理后的物料进入直线脱水筛中,直线脱水筛控制浮选后的骨料含水量。

步骤八、脱水后的物料通过输送带送入砖砼分选系统组。

步骤九、软/硬骨料分选系统组将混合骨料智能分拣为软(砖)骨料和硬(砼和瓷砖)骨料。

步骤十、分选后的砖骨料通过输送带送入反击破碎机,破碎后的砖骨料通过输送带送入圆振筛,圆振筛将物料筛分为0-10mm、10-25mm和25mm以上等三种骨料。三种骨料通过输送带分选送入存储仓中。

步骤十一、分选后的硬骨料通过输送带送入反击破碎机,破碎后的硬骨料通过输送带送入圆振筛,圆振筛将物料筛分为0-10mm、10-25mm和25mm以上等三种骨料。三种骨料通过输送带分选送入存储仓中。

中间再生材料已经制备完成并进入储备料仓,准备进入再生产品的生产系统或准备出售。

4.建筑垃圾再生品的及其推广

在建筑废弃物综合利用方面,以深圳、上海、北京为代表《技术标准》规定了在建筑工程基础砖胎膜、内部空间分隔墙,道路桥梁工程垫层、基层,轨道交通工程地下室底板垫层、地下室顶板回填层,市政管线及综合管廊工程管沟垫层、电缆沟盖板,园林工程人行道地面砖、广场地面砖,水利工程河床防护砌体、排水棱体等部位应采用建筑废弃物综合利用产品。

经营权方面,长沙、河南等地也陆续出台了相关制度提高准入门槛,实行特许经营制度来规范建筑垃圾的清运与处置工作。《长沙市建筑垃圾资源化利用特许经营工作方案》指出对于辖区范围内的拆除垃圾(含道路沥青垃圾)、工程垃圾、装修垃圾的资源化处置实行特许经营,并设定一定年限(15至30年),并严格按照特许经营合同对特许经营企业日常处置行为进行监督。探索把拆除、转运、处理等各个环节一并纳入建筑垃圾资源化利用特许经营范围,形成全链条封闭处置模式。计划在天心区、岳麓区、开福区、雨花区、望城区、长沙县的工业园区各建设一个建筑垃圾处置基地,每个资源化处置场按照年处置300W吨兼职垃圾进行设计和建设。采用弹性供地等方式分期供地,先期保障工地100亩左右,芙蓉区建筑垃圾转送至长沙县建筑垃圾处置基地资源化利用。

5、本设计建筑垃圾处理工艺特色---再生骨料的轻物质分选

即使在破碎之前,运用了人工和负压比重轻物质分选。但是,由于轻物质种类、形状、大小有多种,数量也比较多,轻物质仍然分选不干净。在破碎之后,用建筑垃圾生产出的建筑再生骨料还会还有数量较多的轻物质(有机物),只有将这些轻物质去除干净,才能将这些再生骨料用于相关产品上,并且保证产品质量。本项目将采用公司生产的轻物质浮选机,完成轻物质分选工作。欣畅源科技生产的轻物质浮选机分选产量和纯度都很高,且实现分选用水自动循环利用,实现污水零排放,在国内处理领先地位。采用先进砖/砼分选设备和轻物质水选设备,提升再生骨料品质,拓展再生骨料应用领域,是本项目的一个特点,具体工艺指标如下所示:

建筑垃圾轻物质水浮选

★分选精度:建筑垃圾中轻物质去除率达95%以上,浮选后骨料轻物质含量不高于0.5%;

★处理能力:每小时处理能力不低于100吨/小时;

★处理骨料粒径范围为5mm-100mm;

★分选能耗指标:浮选每吨混合料能耗不高于1kwh;

★程序控制系统:操控需要便捷,支持程序化控制系统。可傻瓜式一键启动,支持手机APP远程操作,监控系统运行详情;

★实现浮选箱自动清洁功能,确保每班稳定运行。每班结束后,系统可以自动清洗浮选箱;

★轻物质去除范围广:浮选机不仅可以高效去除密度小于水的密度的轻物质,对于密度大于水的轻物质,也可以有效去除;

★系统环保性能良好:浮选机排出物为四种,去除轻物质后的干净骨料,不含砂石的泥水,轻物质以及泥水中提取的泥沙。这种泥水方便由水循环系统处理,实现泥水分离和水循环利用。浮选系统工作时候,地面干净,无泥水积累。

★提供完整水循环利用方案,确保环保和节约水资源和运行成本。

6、本设计建筑垃圾处理工艺特色-砖砼分选提高再生骨料附加值

建筑再生骨料中主要成分是质地较硬的瓷砖和砼骨料以及质地较软的砖骨料。砼和瓷砖骨料强度高、吸水系数小、传热系数大;而砖骨料含有很多微孔,吸水系数大,保温性能好。这两种骨料性质和应用场合各不相同:因此,如果能将瓷砖骨料和砼骨料与砖骨料分选开来,可以在使用过程中,充分利用它们各自的性能优点,提升骨料品质和应用价值,扩大骨料应用范围。硬质骨料可以用于生产透水砖、混凝土构件等;而质地较软的砖骨料用来生产保温砖、保温层等效果很好。本项目将采用欣畅源自主研制的“欣畅源”牌软/硬骨料分选机完成软、硬两种骨料的分选功能。这使得本项目在软/硬质骨料分选工艺处于全国先进水平,这提升了本项目建筑垃圾资源化应用水平,具体工艺指标如下所示:

全国建筑垃圾资源化利用最佳实用技术

建筑垃圾砖砼分选系统

★分选精度:系统稳定高效,分离后的砼纯度不低于95%,砖纯度达到85%以上;

★产量要求:系统运行稳定,每小时处理能力不低于10-25吨/小时(针对粒径范围为5mm-40mm的情况);

★处理能力要求:本系统处理物料粒径可根据需求灵活配置。

★分选能耗控制:分选能耗不得超过2kW/t;需要有效的节省处理成本;

★程序控制系统:操控需要便捷,支持程序化控制系统。可傻瓜式一键启动,一键停止,支持手机APP远程操作监控系统运行详情;大批量处理时,支持中央控制系统系统化集群化管控。

回首2019,展望2020,建筑垃圾资源化利用行业在明年将得到长足的推进,整个行业进入高速发展期。届时科学的处理方式将会显得尤为重要,提高骨料的纯净度,增加骨料附加值,完善处理工艺配套才能在激烈的行业竞争中立于不败之地脱颖而出,科技才是第一生产力。欢迎各位领导、同仁交流指正。

盘点建筑垃圾制砖机有哪些使用优势?

建筑垃圾制砂机的前景如何可以从三个方面来看,一个是砂石市场的现状、建筑垃圾的现状、以及建筑垃圾的作用:

一、砂石市场现状

在建筑业如火如荼的发展中,砂石骨料的需求量也持续高涨再加上环保政策和天然砂开采的限制,砂石骨料供不应求的现状也愈发严重,有些省份地区的砂石骨料价格从原来的20元/吨已经涨到了120元/吨,并且价格目前还高居不下。

二、建筑垃圾现状

如今建筑垃圾的产生量迅速增加,已占到城市垃圾总量的1/3以上了,垃圾若不及时处理和利用,会给社会和环境带来不可估量的影响。

按以前的方法处理建筑垃圾,不仅浪费资源还浪费人力物力,再加上资源都是有限的,耗用大量的土地用来堆积、掩埋建筑垃圾不是长久之计,因此需要新的建筑垃圾处理方式。

三、建筑垃圾的回收利用

1、通过破碎设备破碎的废弃建筑垃圾混凝土和砖石生产的粗细骨料,还可生产相应强度等级的混凝土、墙板、地砖等建材制品,如果添加固化类材料还可用于道路建设。

2、通过破碎设备破碎的废砖瓦生产的骨料,可用于生产墙板、地砖、再生砖、砌块等建材用品。

3、破碎设备破碎后的废弃道路混凝土,可加工成再生骨料,用于制备再生混凝土。

综上所述,建筑垃圾制砂机的前景是非常好的。

反击式破碎机的构造

建筑废料制砖机以建筑废料制砖为出发点,大力发展新型墙体材料,积极促进建筑材料产业结构的调整。其制砖机生产的砖制品经国家墙面材料质量检验中心检验,无放射性污染。体积密度和吸水率均优于普通混凝土多孔砖。在烧结砖和非烧结砖之间。其干缩率和导热系数均小于普通混凝土制品,对建筑施工十分有利。建筑垃圾制砖机的效益主要是由于原料成本低,原料和运输成本低,使成本会计方面有相当大的利润空间,再加上国家相关政策的大力支持,使得建筑废砖的制造具有很大的社会效益和经济效益。

其制砖机整体结构紧凑坚固耐用安全可靠。全过程PLC智能控制,操作简单清晰,其以高效的液压振动压制系统,保证了砖成型制品的高强度,铭泽机械建筑垃圾压砖机选用优质特种耐磨钢材为机身主要结构可保证长时间工作运行。这种制砖设备可将通过分级破碎建筑废弃物,直接作为绿化土提供给园林部门,黄土作为绿化土直接提供给园林部门,还可利用建筑废弃物中的砖石、混凝土等将其再生成粗骨料,代替天然砂石砖和石砌砖,经压制生产成各种墙体砖,如建筑废料块、标准砖等。同时,利用铭泽独特的固化剂添加技术,生产成高档彩色地砖、草砖、方砖等路面砖,建筑废砖机的效益主要是由于原料成本料和运输成本低,因此在成本方面有相当大的利润空间,再加上国家相关政策的大力支持,使得建筑废砖的制造具有很大的社会效益和经济效益。

以建筑垃圾为原料,节能降耗减排作为设计的指导思想的建筑垃圾砖生产线,具有以下特征:

1、采用调频调幅和振动,使成品砖既密实度高也能节约能源。

2、利用建筑垃圾作为制砖原料,可生产多种标准砖、承重空心砖、空心砖再生砖等,并可按要求的形状和尺寸进行模具成型。

3、铭泽机械制砖机制造成本低,生产效率高,节能环保,模块化设计,安装维修方便。

建筑垃圾制砖机制造有着广阔的前景。建筑废料制砖不仅能有效地消除大量的建筑废弃物和其他固体废物,而且能有效地解决建筑废物侵占土地、污染环境的问题。有效地解决了我国大量燃烧造成的大量土地破坏和空气污染问题,从而促进了建筑墙体材料生产产业结构的优化升级,实现了建筑墙体材料生产技术的跨越式发展。

水泥稳定建筑垃圾的路用性能探究?

单转子反击式破碎机的构造,料块从进料口喂入,为了防止料块在破碎时飞出,在进料口进料方向装有链幕。喂入的料块落在篦条筛的上面,细小料块通过篦缝落到机壳的下部,大块的物料沿着筛面滑到转子上。在转子的圆周上固定安装着有一定高度的板锤,转子由电动机经V型皮带带动作高速转动。落在转子上面的料块受到高速旋转的板锤的冲击,获得动能后以高速向反击板撞击,接着又从反击板上反弹回来,在破碎区中又同被转子抛出的物料相碰撞。由 条筛、转子、反击板以及链幕所组成的空间称为第一冲击区;由反击板与转子之间组成的空间是第二冲击区。物料在第一冲击区受到互相冲击而破碎后,继而又进入第二冲击区受到再次的冲击粉碎。破碎后的物料经机壳下部的出料口卸出。

反击板的一端用活链悬挂在机壳上,另一端用调节螺栓将其位置固定。当大块物料或难碎物件夹在转子与反击板之间的间隙时,反击板受到较大压力而使反击后移。

经过一系列的试验,对水泥稳定建筑垃圾的无侧限抗压强度、劈裂强度、抗压回弹模量、抗冻性、水稳定性等路用性能进行了研究,并分析了水泥稳定建筑垃圾的最大干密度与最佳含水量间的关系,以及水泥含量对水泥稳定建筑垃圾各项路用性能的影响。结果表明:水泥稳定建筑垃圾的强度和刚度较高、抗冻性与水稳定性较好,各项路用指标均满足规范对轻交通二级以下公路基层及底基层的材料要求。

1引言

目前,我国正处在城市建设与基础设施建设的高峰期,据相关数据表明,我国目前因此产生的建筑垃圾约为25亿t,这些数量巨大的建筑垃圾大多被简单的露天堆放或是填埋处理后,不仅占据着有限的土地空间,又对环境产生较大的污染[1]。在建筑垃圾的再生利用方面,我国虽然取得了一系列的研究成果,但是建筑垃圾再生利用的标准不够成熟[2]。

国外对建筑垃圾再利用的研究比较早,美国的相关研究表明,建筑垃圾再生骨料的粒径是影响建筑垃圾性能最主要的因素,当存在较多的大粒径再生骨料时,空隙较多导致再生骨料制成的混凝土强度较低[2];日本在建筑垃圾利用方面,以“谁生产,谁负责”为原则,建筑垃圾的利用率在97%以上,同时日本对建筑垃圾制成混凝土的配合比、强度、耐久性,施工工艺等方面进行了系统的研究[3];德国针对建筑垃圾,开发了一种蒸馏燃烧工艺,将其中的各有效成分分离出来,并分别加以利用,产生的燃气用来发电,剩下的破碎建筑垃圾物用于填筑道路路基以及人造景观物[4]。本文通过一系列的试验研究,系统分析了建筑垃圾的抗压强度、劈裂强度、抗压回弹模量、抗冻性能、水稳定性能等路用技术指标,为建筑垃圾在道路上的的推广应用提供了技术上的支撑。

2原材料性质

2.1水泥

水泥采用32.5#的普通硅酸盐水泥。

2.2建筑垃圾

建筑垃圾的路用性能主要由建筑垃圾的成分所决定,本文所采用的建筑垃圾主要来源于旧建筑物拆迁,建筑垃圾成分主要包括泥土、碎砖瓦、混凝土块、砂浆、木材、钢材等。在生产建筑垃圾再生集料的现场,一般设备主要有:风选除杂设备、筛分设备、磁吸分拣设备、反击式破碎机以及其他设备。对建筑垃圾中的混凝土块、碎砖瓦等进行破碎、筛分后,按规范要求的级配进行掺配。建筑垃圾的压碎值大于26%,所以不能直接用于高速公路、一级公路路面的基层,但可作为二级及二级以下公路路面的基层或底基层[5]。建筑垃圾再生集料与一般的天然集料相比,再生集料表面吸附着较多的水泥砂浆,并且表面上的开孔空隙比较明显,同时在生产建筑垃圾再生集料时,对集料产生较大的冲击作用,致使再生集料内部有一定数量的微小裂纹,从而降低了集料的强度。但建筑垃圾再生集料中的微粉含量比天然集料高,并且微粉中有未水化的水泥颗粒和一些活性物质,而这些物质能够在一定程度上改善了再生集料的路用性能。

3水泥稳定建筑垃圾的路用性能

3.1标准击实试验

当建筑垃圾混合料中有较少的细颗粒时,混合料形成的结构是骨架密实型,细颗粒悬浮在骨架空隙中,此时建筑垃圾混合料的干密度较小。当细颗粒含量较多时,混合料难以形成骨架,此时混合料的强度较小。标准击实试验的主要目的是确定水泥稳定建筑垃圾再生集料的配合比,即在最大干密度的情况,确定水泥稳定建筑垃圾的最佳含水量,最终确定其配合比。在含水量比较小时,再生集料的干密度会随着含水量的增大而增大。在含水量增大到一定程度时,干密度开始下降,含水量—干密度曲线出现拐点,此时拐点处的干密度称为最大干密度,拐点处的的含水量称为最佳含水量[6]。

根据试验规程[6]中的方法,先确定水泥剂量,再取5~6份建筑垃圾再生集料,然后依据不同的含水量制备出再生集料混合料试样,再按照规定的击实功在试筒内对混合料试样进行击实,然后对击实完成后的混合料试样进行称重并测定其含水量,计算出干密度,最后在含水量—干密度坐标系中依次描绘出各点,并连接成圆滑的曲线,曲线最高点对应的含水量为最佳含水量,曲线最高点对应的干密度为最大干密度。本文选取3%、4%、5%、6%、7%不同的五组水泥含量,分别测得在不同的水泥含量时,水泥稳定建筑垃圾的最佳含水量和最大干密度。水泥含量越大,水泥稳定建筑垃圾的最佳含水量越大,而最大干密度变化不大。这主要是因为掺入建筑垃圾中的水泥与水反应需要消耗一定量的水,又因为水泥在建筑垃圾中的含量很少,所以建筑垃圾的最大干密度变化不大。

3.2水泥稳定建筑垃圾无侧限抗压强度试验

根据规范[7]中对水泥稳定类材料基层或底基层的强度要求,当水泥稳定类材料作为轻交通沥青路面底基层时,其7d无侧限抗压强度值应大于或等于1.5MPa;而当作为特重交通沥青路面的基层时,其7d无侧限抗压强度值应大于或等于3.5MPa。参照相关试验规程[8],利用静压法来成型圆柱体试件,并使试件在标准养护条件下湿养6d,在水中养护24h,最后进行试验。在试验的前一天,先将试件置于水中24h,然后在试验前,将试件从水中取出,用湿润的毛巾把试件表面的水分吸干,最后把试件放在万能压力试验机的升降台上,进行无侧限抗压强度试验,同时控制加荷时的荷载速度为0.1kN/s~0.2kN/s,为了保证试验结果的准确性,每一组采用9个试件,最终以9个试件测值的平均值作为每一组确定水泥含量下的无侧限抗压强度值。

本文选取3%、4%、5%、6%、7%不同的5组水泥含量,分别测得水泥稳定建筑垃圾在7d、28d、90d的无侧限抗压强度。从无侧限抗压强度试验数据可知,水泥剂量越大,水泥稳定建筑垃圾的无侧限抗压强度越大,这是因为较多的水泥与水反应产生了较多的水泥水化产物,与建筑垃圾集料一起逐渐形成一个三维网状结构的水泥浆体,这些水泥浆体最终将直接影响着水泥稳定建筑垃圾的强度,同时随着龄期的不断延长,水泥稳定建筑垃圾的强度不断增大,直至趋于稳定。

3.3水泥稳定建筑垃圾劈裂强度试验

依据相关试验规程[8]中的试验方法,将不同水泥含量3%、4%、5%、6%、7%的水泥稳定建筑垃圾材料分别制作成标准试件,并在标准养护条件下养生至90d龄期,最终测得试件的劈裂强度如表6所示。由劈裂强度试验中的数据可以看出,二灰土的劈裂强度(一般为0.25MPa[9])小于水泥稳定建筑垃圾,而水泥稳定建筑垃圾的劈裂强度小于水泥稳定碎石(一般为0.5MPa),这是因为建筑垃圾本身具有一定的强度,水泥剂量越大,水泥稳定建筑垃圾的劈裂强度越大,并且水泥含量增加1%,劈裂强度提高约8%~18%,这是因为较多量的水泥反应产生了较多的水泥水化产物,而这种水泥水化产物对水泥稳定建筑垃圾的劈裂强度有较大的影响。

3.4水泥稳定建筑垃圾的抗压回弹模量试验

水泥稳定建筑垃圾作为公路的基层及底基层材料时,承受着由路面面层传递下来的荷载作用,此时,水泥稳定建筑垃圾不仅应具有足够的强度,也要有一定的抵抗基层及底基层变形的刚度。根据相关规范的试验要求,测得水泥稳定建筑垃圾在不同水泥剂量下的抗压回弹模量值。水泥稳定建筑垃圾的抗压回弹模量值与石灰碎石土(一般为700MPa~1100MPa[9])相差不大,而比二灰砂砾的抗压回弹模量值小(一般为1100MPa~1500MPa[9])小。水泥含量越大,水泥稳定建筑垃圾抗压回弹模量值越大。这是因为较多的水泥水化产生较多的具有膨胀结构的水化产物,这些膨胀的水化产物填充于建筑垃圾的空隙之中,最终使得建筑垃圾再生集料具有一定的抵抗变形的能力[10]。

3.5水泥稳定建筑垃圾的抗冻性能

位于寒冷地区的路面基层以及底基层不仅承受着荷载的作用,同时也承受着环境温度变化产生的影响,所以当水泥稳定建筑垃圾用于寒冷地区的路面基层及底基层时,还需要具有一定的抗冻性能。依据相关试验规程[8]中的试验方法,测得水泥稳定建筑垃圾在水泥含量分别为3%、4%、5%、6%、7%时的抗冻系数。水泥稳定建筑垃圾的抗冻系数均大于60%,具有一定的抗冻性能,所以在修建中等以下寒冷地区的公路时,可以使用水泥稳定建筑垃圾作为基层或底基层材料。水泥含量越大,水泥稳定建筑垃圾的抗冻性能越好,且水泥含量每增加1%,水泥稳定建筑垃圾的抗冻系数约提高9.6%~13.0%。这是因为水泥水化产生的较多水化产物将建筑垃圾再生集料中的孔隙填充满,从而使得水分难以进入到建筑垃圾内部中去,最终使水泥稳定建筑垃圾具有一定的抗冻性能。

3.6水泥稳定建筑垃圾的水稳定性

水稳定性是公路路用性能的一个重要指标,一般用水稳定系数表示。根据相关试验规程[8]中的试验方法,一般先将水泥稳定建筑垃圾试件在标准养护条件下养护28d,其中包括最后1d的浸水时间,再经过5次48h的自然风干,然后又浸水24h的干湿循环,最后测得试件的抗压强度与标准养护28d龄期测得试件的抗压强度的比值。依据试验方法测得在水泥含量分别为3%、4%、5%、6%、7%时。水泥稳定建筑垃圾的水稳定系数越大,水泥含量每增加1%,水稳定系数增大3%~6%。

4结语

本文经过对水泥稳定建筑垃圾进行一系列系统的研究,得出了水泥稳定建筑垃圾的无侧限抗压强度、劈裂强度、抗压回弹模量、抗冻性、水稳定性等一系列的路用性能试验结果。①水泥稳定建筑垃圾的强度和刚度均较高,在修建轻交通二级以下公路时,可以作为路面的底基层材料,如果要作为路面的基层材料时,水泥在水泥稳定建筑垃圾混合料中的含量应大于或等于6%。②水泥稳定建筑垃圾的抗冻性与水稳定性均较好,且水泥剂量越大,其抗冻性能与水稳定性能均越好,水泥含量每增加1%,水泥稳定建筑垃圾的抗冻系数约提高9.6%~13.0%,水稳定系数约提高3%~6%,且试验中的水泥稳定建筑垃圾抗冻系数均大于50%,所以在修建中等以下寒冷地区的公路时,可以将水泥稳定建筑垃圾用作基层及底基层材料。

工程招标业主名录

上海工程招标业主名录

江苏工程招标业主名录

更多关于工程/服务/采购类的标书代写制作,提升中标率,您可以点击底部官网客服免费咨询:#/?source=bdzd